
MATHEMATICS OF COMPUTATION
VOLUME 58, NUMBER 197
JANUARY 1992, PAGES 323-339

THE MONTE CARLO ALGORITHM
WITH A PSEUDORANDOM GENERATOR

J. F. TRAUB AND H. WOZNIAKOWSKI

ABSTRACT. We analyze the Monte Carlo algorithm for the approximation of
multivariate integrals when a pseudorandom generator is used. We establish
lower and upper bounds on the error of such algorithms. We prove that as
long as a pseudorandom generator is capable of producing only finitely many
points, the Monte Carlo algorithm with such a pseudorandom generator fails for
L2 or continuous functions. It also fails for Lipschitz functions if the number
of points does not depend on the number of variables. This is the case if a
linear congruential generator is used with one initial seed. On the other hand,
if a linear congruential generator of period m is used for each component, with
independent uniformly distributed initial seeds, then the Monte Carlo algorithm
with such a pseudorandom generator using n function values behaves as for
the uniform distribution and its expected error is roughly n - 1/2 as long as the
number n of function values is less than m2.

1. INTRODUCTION

Randomization is being widely used or proposed to solve both continuous
and discrete problems. Examples include multivariate integration, algebraic
eigenvalues, primality testing, byzantine agreement, and verification. When
randomized algorithms are implemented on a computer, pseudorandom num-
bers must be used. In this paper we investigate whether the good properties
of the Monte Carlo algorithm for multivariate integration hold if pseudoran-
dom numbers are used. We suggest that such an analysis should be performed
whenever randomization is used.

One can identify two types of work regarding pseudorandom generators. In
the first, they are studied in isolation from a particular problem. Excellent sur-
veys are given in Knuth [1 1, Chapter 3] and Niederreiter [14, 15, 16]. More re-
cently, polynomial-time unpredictability of pseudorandom generators has been
studied by Yao [21], Blum and Micali [3], and others.

In the second, the relation between pseudorandom generators and random-
ized algorithms is studied for a specific problem. Examples are provided by
Bach [1], who studied finding square roots modulo a prime number and primal-
ity testing. Karloff and Raghavan [10] studied sorting, selection, and oblivious
routing in networks. They showed that certain randomized algorithms work
well with a linear congruential generator and a random seed.

Received September 4, 1990.
1991 Mathematics Subject Classification. Primary 65C05, 65C10.

?
1992 American Mathematical Society

0025-5718/92 $1.00 + $.25 per page

323

324 J. F. TRAUB AND H. WOZNIAKOWSKI

In this paper we discuss approximate integration of functions of d vari-
ables. It is known that for r times differentiable functions we have to compute
E(e-d/r) function values at deterministically chosen points to guarantee an e-
approximation to the integral in the worst case setting (see ?2). If d is large
relative to r, the problem is intractable, since even the fastest computers cannot
compute so many function values.

Many other problems have been proven to be intractable. Sometimes ran-
domization may be used to break intractability; a general discussion of random-
ization may be found in Traub, Wasilkowski, and Woiniakowski [20, Chapter
11].

For multivariate integration, randomization is used by computing function
values at randomized points. In this paper we shall study the Monte Carlo algo-
rithm with a distribution p. That is, we approximate the integral f[o, ld f (t) dt
by the arithmetic mean n1 -IEn1 f(ti), where the points ti are random vari-
ables drawn with respect to p. As is discussed below, we can treat pseudoran-
dom generators as random number generators with respect to some distribution,
and alternatively, we will also write the Monte Carlo algorithm with a pseudo-
random generator.

When the distribution p is uniform, i.e., the points ti are independent and
uniformly distributed random variables over the unit cube, we omit mention-
ing p and refer simply to the Monte Carlo algorithm. Thus when we write
Monte Carlo algorithm we mean the classical algorithm with independent and
uniformly distributed points ti. It is known that the Monte Carlo algorithm
enjoys the following good properties:

(1) convergence rate n-1/2 independent of dimension d,
(2) the convergence rate holds even for functions from L2.

In computational practice, randomized points are obtained by using a pseu-
dorandom generator, such as a linear congruential generator, from which the
evaluation points are computed. Obviously, the use of a pseudorandom gen-
erator can at best approximate independent and uniformly distributed random
variables.

The problem addressed in this paper is whether the good properties of the
Monte Carlo algorithm can be preserved if a pseudorandom generator is used.
A pseudorandom generator may be understood as a deterministic mechanism
to generate points. This deterministic mechanism may depend on some param-
eters. For instance, a linear congruential generator depends on an initial seed.
If these parameters are randomly selected, the corresponding pseudorandom
generator can be formally treated as a random generator with respect to some
distribution. The assumption of random selection of parameters may or may
not be realistic. Observe that if randomness is not allowed, the worst case re-
sults imply intractability of multivariate integration. That is why we assume in
this paper that a pseudorandom generator depends on some randomly selected
parameters, and we treat pseudorandom generators as random generators with
respect to some distribution.

We now informally summarize the conclusions of this paper. We prove that
the Monte Carlo algorithm with an arbitrary pseudorandom generator which
is capable of producing only finitely many points fails for some continuous
functions (see Theorem 3.1). This negative result means that the use of such

THE MONTE CARLO ALGORITHM 325

pseudorandom generators requires more smoothness than the Monte Carlo al-
gorithm.

On the other hand, we would like to assume as little extra smoothness as
possible. We compromise by considering the class of Lipschitz functions with
uniformly bounded Lipschitz constant. Without loss of generality we take the
constant as unity.

For this class we obtain lower and upper bounds on the error of the Monte
Carlo algorithm with a pseudorandom generator.

We first discuss lower bounds. In ?3, we show that the error of the Monte
Carlo algorithm with an arbitrary pseudorandom generator is at least about
(k*)-l/d (see (3.8)), where k* denotes the total number of points which the
pseudorandom generator is capable of producing.

In particular, assume that a linear congruential generator of period m is
used with one randomly selected initial seed, and that the points at which the
function is evaluated are defined from d successive pseudorandom numbers.
Then k* = m, and k* is independent of d (see Example 3.1). Note that even
for large m and modest d, (k*)-l/d is not small. In this case, the algorithm
again fails.

To ensure small error of the Monte Carlo algorithm with a pseudorandom
generator for the class of Lipschitz functions, we must guarantee that (k*)-lld
is small even for large d . This can be achieved if a linear congruential generator
of period m is used d times for each component, with independent initial
seeds. We then have k* = md and (k*)- ld = m-n (see Example 3.2 and also
Example 3.3). Usually, m is large, say m = 230, and the lower bound is quite
acceptable.

We now turn to upper bounds. In ?4, we establish upper bounds on the
error of the Monte Carlo algorithm with points which are independent random
variables produced by arbitrary pseudorandom generators. In particular, the
upper bound for a linear congruential generator of period m used d times
for each component independently, and with uniform distribution, is roughly
n-112 as long as n < M2 (see Theorems 4.1 and 4.2). In this case, the behavior
is essentially the same as with uniform distribution.

In ?5 we mention a few open problems. We suggest carrying out similar
analyses for problems such as weighted multivariate integration and algebraic
eigenvalues. It would also be of interest to analyze different pseudorandom
generators, in particular, generators which, at least theoretically, are capable of
producing infinitely many points.

2. DETERMINISM AND RANDOMIZATION FOR MULTIVARIATE INTEGRATION

Let T = [0, 1]d be the d-dimensional unit cube. We wish to approximate
the multivariate integral

(2.1) I(f) = f(t) dt

for any function f: T -D R which belongs to a class F, where F is a subset
of L2(T).

We first consider deterministic algorithms (on which use n function values
at deterministically chosen points to approximate I(f) . More precisely, (On is a
mapping (not necessarily linear) of the form n (f(tI), f(t2), . . ., f(tn)) , where

326 J. F. TRAUB AND H. WOZNIAKOWSKI

the deterministic points tl, t2, ... , t, belong to T and may be chosen adap-
tively, i.e., t4 may depend on the already computed f(t1), f(t2), ..., f(ti-)i
Let

edt ((Pn F) = sup II(f) - (D(f(ti), ... , f(tn)) I
feF

be the deterministic worst-case error of the algorithm Pn . Let

(2.2) e det(F) = infedet(,Pn, F)

be the nth deterministic minimal error which can be achieved by using n
function values.

The quantity edet(F) has been extensively studied for many different classes
F of multivariate functions (see, e.g., Novak [17] for a recent survey). For
instance, if F = BL2(T) is the unit ball of the space of L2-integrable functions,
or F = Cd is the unit ball of the class of continuous functions with sup norm,
then

(2.3) edet(BL2(T)) = edet(Cd) = 1 Vn.

This easily follows by noting that if f belongs to Cd and takes on, say, zero
values at n points then the best bounds on its integral is the interval (-1, + 1)
and the best approximation is zero, i.e., the midpoint of this interval. This
implies that the error of any algorithm is at least 1, and since the zero algorithm,

nO= 0, has error 1, we have 1 = edet(Cd) < edet(BL2(T)) < 1, as claimed.
Thus, it is impossible to approximate I(f) with error less than one, no matter
how many function values are used.

This negative result can be interpreted as stating that continuity of f is not
enough to compute an approximation in the deterministic worst case setting.
Therefore, it is natural to study classes of smoother functions. Consider

(2.4) Cdra= ff T -- R: I DW f(x) - Dj) f(y)I < max I Xi - YiIa VIjI < r d ~~~~~~~~~~~~~

as the class of functions all of whose partial derivatives up to order r, where r
is a nonnegative integer, satisfy a Holder condition with a E (0, 1].

Bakhvalov [2] proved that for F = C a we have

(2.5) edet (Cd a) = Ef(n-(r+a)/d) as n - +oo

(see also Novak [17, p. 34]). Thus, the nth minimal error goes to zero. How-
ever, if d is large relative to r + a, then the rate of convergence is very poor.
To see this more clearly, let n = ndet(e) be the smallest integer for which
edet (C r a) < e. Then

(2.6) ndet(g) E-((8-11(r+a))d)

Thus, ndet(.) is an exponential function of d, and for d large relative to r+ a,
ndet(e) is huge, even for moderate e. In this case, multivariate integration is
intractable, since it is impossible to compute so many function values. One may
say that the "curse of dimensionality" makes the problem intractable.

To break intractability of multivariate integration, one can evaluate f at
randomized rather than deterministic points. In this paper we shall study the

THE MONTE CARLO ALGORITHM 327

Monte Carlo algorithm with distribution p. That is, we approximate fT f(t) dt
by

(2.7) MC(f; 1t . tn) = f (ti)

where the points t1, ..., tn are random variables drawn with respect to p.
When the distribution p is uniform, i.e., the points t1 are independent and

uniformly distributed random variables over T, we omit mentioning p and
refer simply to the Monte Carlo algorithm. There is a huge literature on ran-
domization with applications to many diverse problems. See books and surveys
by Hammersley and Handscomb [7], Granovskii and Ermakov [8], Davis and
Rabinowitz [4], Sobol [18], Kalos and Whitlock [9], Niederreiter [14, 15, 16],
and Novak [17].

The quality of the Monte Carlo algorithm is defined by the expected error
with respect to the points t1 for a worst-case function f from the class F.
That is,

(f(1 ~~~~21/2
(2.8) eran(t4 c, F, A) = sup i I(f)- dt, ..dtn n

~~feE \Jn nZ-vfkti~) .d)

where A stands for the Lebesgue measure.
The basic property of the Monte Carlo algorithm is that the expected error

En (f, A) for a function f is

(2.9) En(f,~) =
(J

Y
(If! f(ti)) dt... dtfln (2.9) (Jn (n l))

= >1 V (t) - I(f))2 dt)

Remark 2.1. The expected error of the Monte Carlo algorithm for the function
f depends on its variance fT(f(t) - I(f))2 dt. There are many techniques
on how to decrease the variance by performing certain transformations on the
function f (see, e.g., Davis and Rabinowitz [4] for a survey). These tech-
niques require some additional information about the function f such as extra
smoothness, a particular form, or location of singularities. In our case, we as-
sume that the only information about f is given by its function values and by
the fact that f belongs to F. Therefore, in general, techniques for decreasing
the variance are not applicable under our assumptions. 01

Take now the supremum in (2.9) with respect to functions f from F =
BL2(T) or F= Cd. Then

(2.10) eran(MC, F, A) = fan-1/2),

where the constants in the 0 notation do not depend on d.
Thus, the Monte Carlo algorithm converges even for nonsmooth functions.

Moreover, the rate of convergence does not depend on the dimension d.
It is natural to ask if the error of the Monte Carlo algorithm can be im-

proved by the use of different distributions of sample points or by differently

328 J. F. TRAUB AND H. WOZNIAKOWSKI

combining the computed function values. That is, let On denote the class of all
(possibly randomized) algorithms that use function values at randomized points
f(tP), f(t2), . . . , f(tn~j)) with respect to some distribution p. Here, n(f) is
also a random variable with expected value at most n . Let

(2.11) e'an(F) = inf eran((o, F)
neVON

denote the nth minimal error of such algorithms.
Bakhvalov [2] for n (f) =_ n, and Novak [17] for randomized n (f), proved

that

(2.12) e'an(Cd) = E(n -1/2) eran(Cr 'a) = E(n -((r+a)1d+112))
This means that the Monte Carlo algorithm is optimal (to within a multiplicative
constant) for the class Cd and BL2 (T), and is close to optimal for the class
Cd a whenever d is large relative to r + a.

The exponents in the nth minimal errors for the deterministic and random-
ized cases differ by 2. This is essential. To see this, compare the smallest
numbers of function evaluations necessary to guarantee that the nth minimal
errors to not exceed e . For the randomized case and the class Cd' a we have

(2.13) nran(,) = E9(, -2/(1+2(r+a)/d)) = 0(6-2)

Thus, nran(.) is at most a quadratic function in e-1 for all d, as opposed to
an exponential function ndet(.) of d in the deterministic case (see (2.6)).

3. LOWER BOUNDS ON THE ERROR OF THE MONTE CARLO ALGORITHM
WITH PSEUDORANDOM NUMBER GENERATORS

The good properties of the Monte Carlo algorithm are based on two assump-
tions:

(1) the points t1, t2, ..., tn are independent and uniformly distributed
random variables over T = [0, 1id,

(2) the effect of randomness is measured by the expected distance between
I(f) and i

EZnI f(ti) with respect to the points ti.
In computational practice, the points t1 are selected by using a pseudoran-
dom generator. This generator produces a sequence of numbers from which
the points t1 are calculated. Clearly, any pseudorandom generator can at best
approximate independent and uniformly distributed random variables. It is
natural to ask whether the good error properties of the Monte Carlo algorithm
can be preserved when a pseudorandom generator is used.

Technically, this corresponds to the problem of analyzing the Monte Carlo
algorithm if assumption (1) is only approximately satisfied whereas assumption
(2) is left unchanged. Assume thus that the points *= [tl, t2, ..., tn] E Tn are
drawn with respect to some distribution p. The expected error of the Monte
Carlo algorithm for a function f is now defined as

(3.1) (fT P) i (f fti) p(dt)

By the maximal expected error in the class F we mean (compare with (2.8))

(3.2) eran((mc, FF p) = supEn(f, p).
feF

THE MONTE CARLO ALGORITHM 329

Assume that a pseudorandom generator can produce only finitely many dif-
ferent numbers from which the points ti are calculated. Then the distribution
p is an atomic measure supported on the points, say, I, x2, . .., X% for some
k, usually very large, where xi = [xi1, xIi2, ...2, Xin] with xi,j E T. The
number k may or may not depend on the dimension d. This depends on how
pseudorandom numbers are used to compute the points xi. We then have for
any function H: Tn -R

k

(3.3) I H(x)p(d x) = EpiH(x,)

for some nonnegative Pi and EkZ- pi = 1.
Let k* denote the total number of different components of the points xl, x2,

..., X . That is, k* is the cardinality of the set

IXi,j E T: i = 1, 2, ..., k, j 1, 2, E n} = It*, t2,* , t**}

Clearly, k* < kn. As we shall see later, depending on how the points t* are
computed from pseudorandom numbers, k* may depend on d and n, or k*
may be independent of d and n .

The form (3.3) of p enables us to find a lower bound on the expected error
En (f, p) for some functions f from the class F. To accomplish this, take
a function f from F which vanishes at all the points t'*, t*, ..., tk* . Then

En(f, p) = II(f)I. If F is convex and balanced, i.e., f E F implies that
-f E F, then it is known that

sup{|I(f)|: f E F, f(t7) = 0, i = 1,2, ... , k*} = eket(F)

where, as in (2.2), edet(F) denotes the k*th deterministic minimal error which
can be achieved by using k* function values. Thus,

(3.4) eran((pmc, F p) ? ek.t(F)

For some convex and balanced classes F, the k* deterministic minimal error
is constant. For example, if F = BL2(T) or F = Cd, then eket(F) = 1 Vk*
(see (2.3)). Therefore, we have

Theorem 3.1. The Monte Carlo algorithm with an arbitrary pseudorandom gen-
erator which is capable of producing only finitely many points does not converge
for the class F = BL2(T) or F = Cd,

(3.5) eran(pmc, F, p) > 1 for F = BL2(T) or F = Cd.

Theorem 3.1 should be contrasted with (2.10), which states that for p = A
(the Lebesgue measure) we obtain the Monte Carlo algorithm whose convergence
iS eran(l4McC, F, A) = E(n- 1/2)

Remark 3.1. The estimate (3.5) remains true for an arbitrary algorithm
(o(f(tl), f(t2), ..., f(tn)). That is, for F = BL2(T) or F = Cd, we still
have

f 1/2
inf sup g(I (f) - Pf ff(tl), f (t2), . , tn)))2 p(t)) >1

V fEF Tn

330 J. F. TRAUB AND H. WOZNIAKOWSKI

This negative result can be interpreted as stating that the use of a pseudorandom
generator resulting in finitely many points t7 requires more smoothness of f
than the Monte Carlo algorithm.

On the other hand, if we assume sufficient smoothness of functions, then even
the deterministic estimates become quite acceptable. For example, consider the
class F = Cd a with r +a comparable to d . Then the estimate (2.5) indicates
that multivariate integration is a tractable problem.

Recall that the Monte Carlo algorithm works well even for nonsmooth func-
tions. That is why, using a pseudorandom generator, we would like to preserve
this good property with as little extra smoothness of the functions f as possible.

Clearly, continuity of f is not enough. We compromise by assuming that f
satisfies a Lipschitz condition with constant, say, 1. Without loss of generality,
we also assume that f(O) = 0 . That is, let f belong to Ed, where

Fd= {f: T - R: f(0) = 0 and If(x) -f(y)l < llx-YIK
(3.6)

- max Ixi - Y2 }I
1<i<d J

This class has been analyzed in the deterministic worst-case setting by Sukharev
[19], who proved that

(3.7) e*t(Fd) > 1 L(k*)l/dJ-l

and we have equality in (3.7) if (k*)l/d is an integer. Using (3.7) and (3.4), we
conclude that

(3.8) eran(ipmjc,
Ed p) d d1j1 (n d P) > 2(d + 1) L(k*) J

As mentioned before, k* may or may not depend on d and n. If k* does
not depend on d and n, then for large d, the right-hand side of (3.8) is close
to 2. Furthermore, since L(k*) ld1-1 goes to 1 very quickly as d increases,
even for very large k* and modest d, the right-hand side of (3.8) is not small.
For example, take k* = 230 and d = 10. Then

d L(k*)Ildj-1 = 5-
2(d + 1) [(8)/"'

In this case, we again lose the convergence rate enjoyed by the Monte Carlo
algorithm. We now present an example where this happens.

Example 3.1. One of the most widely used pseudorandom generators is a linear
congruential generator proposed by Lehmer [13] and extensively studied in the
literature (see, e.g., Niederreiter [14] and Knuth [1 1]). The linear congruential
generator produces a sequence of integers

ao = an initial seed, which is an integer from [0, m),
ai+l = (Aai + r) mod m, i = 0, 1,

Here, the modulus m is taken as a large prime or a large power of 2, the
multiplier A is a positive integer relatively prime to m, and r is called the
increment. The parameters m, A, and r have to be chosen such that the

THE MONTE CARLO ALGORITHM 331

sequence {ai} passes appropriate statistical tests. In particular, the period of
this sequence should be about m.

From the integers ai one can compute the points xi as follows. Let zi =

ai/m and
Xi = [Zi, Z *** Zi+d-1l.

The properties and shortcomings of the points xi have been extensively studied,
and surveys may be found in the works mentioned above. Note that all the
points xi are fully determined by the initial seed ao . To stress this dependence,
we write xi = xi(ao) . The points x = x(ao) are then given by

X(ao) = [xi(ao), X2(ao), ..., xn(ao)] E Tnd.

By changing the initial seed ao we obtain different points x(ao) . Since ao can
take at most m different values, we have k < m different points x(ao) . The
distribution p now takes the form (see (3.3))

J/ H(x) p(dx) = E PaoH(x(ao))
O<ao<m-1

for some weights Pao . (If ao takes m different values with equal probability,
then Pao = 1/rm.)

Now, the number of different components of x(ao) 's is equal to the number
of different points x1 (ao), x2(ao), ... , xn (ao). Clearly, there are at most as
many such points as there are different values of ao. Thus, there are at most
m of them. Hence, k* < m. In this case, k* does not depend on d and n,
and we may apply the estimate (3.8). This proves that this use of the linear
congruential generator leads to poor results for the class Fd with large d. 01

Remark 3.2. It should be noted that the negative result of Example 3.1 does not
hold if one assumes extra smoothness of functions f. More precisely, if we
assume that f has a finite variation V(f) in the sense of Hardy and Krause,
then the Koksma-Hlawka inequality states that

(3.9) I(f)-n f (xi) < V(f)Dn,

where Dn is the discrepancy of the points xI, x2, ..., xn (see Niederreiter
[14, 15, 16] for excellent surveys on this subject).

The total variation V(f) is finite if f is once differentiable in each direction
ti, and aif/& til . ati, for j < d belongs to L1 (T). (Therefore, not all
functions in Fd have finite variation!)

For the points xi given by a linear congruential generator, the discrepancy
Dn was studied by Niederreiter, who proved, in particular, that for a good
choice of the parameters we have

D= (h(lom)d+l) for n < m
n

(see Niederreiter [14, p. 1018]).
The estimate (3.9) suggests that as long as we consider functions of finite

variation, we should choose points which minimize the discrepancy Dn. This
problem has also been extensively studied, and Halton [6] proved that there exist

332 J. F. TRAUB AND H. WOZNIAKOWSKI

points for which the discrepancy D, is of order n -I (log n)d-l (see Niederreiter
[14, 15, 16] for a survey of what is known about the discrepancy).

In summary, the extra smoothness introduced by the existence of finite varia-
tion makes multivariate integration a tractable problem, since with a good choice
of n deterministic points the error goes to zero as n1 -(log n)dl- . Hence, the
rate of convergence depends very mildly on the dimension d. For such a class
of functions, we obviously should not use randomization. 01

The discussion above indicates that for the class Ed we should use a pseudo-
random generator and calculate the points t7 in such a way that k* depends on
d and/or n and is as large as possible. In view of the right-hand side of (3.8),
we would ideally like to have L(k*)l/dJ-l be independent of d and hopefully
small. We now indicate how this can be achieved for two examples still using a
linear congruential generator.

Example 3.2. As in Example 3.1, consider a linear congruential generator pro-
ducing the integer sequence {ai} of period m. Suppose we use this generator
d times for each component of x = [xl(al), x2(a2), ..., xd(ad)] with inde-
pendent initial seeds a1, a2, ..., a~d. Since each xi(ai) can take m different
values, and because they are independent, we could generate md different points
of T. Thus, k* = md, and (3.8) now becomes

(3.10) eran(qpc, Fdp) > d 1

Since m is usually huge, the right-hand side of (3.10) is quite satisfactory. 01

Example 3.3. For simplicity assume that n = pd, and let h = i/p. Partition
the cube T into n subcubes

Til.i2 id = [iih, (i1 + 1)h) x [i2h, (i2+ 1)h) X *.. X [idh, (id + 1)h)

for il , i2 ... , id = 0 1 ,... , p-1 .
Using a linear congruential generator of period m, select only one vector

x = [xi(ao), X2(ao), ... , xn(ao)].

Then define the points Zi..d by shifting hx to each subcube Til ..d i.e.,

Xil .id =[iih, ... , idh] + hx.

Then we will have k* = mn different points jl,. d, and (3.8) becomes

eran(ql, Ed, p) d_ 1dj1

dpdn o d .d
P) >

2(d+ 1)L(mn)
J.

Although the lower bound goes now to zero as n goes to oc, we still have a bad
dependence on d. This can be improved by running the linear congruential
generator d times for each component of x independently, as in Example 3.2.
That is, we now have

x = [xi(al), x2(a 2), x. , xd(aod)],

Xil.id = [iih, ..., idhl+hx.

THE MONTE CARLO ALGORITHM 333

In this case, we have k* = mdn different points xi., and (3.8) becomes

eran(,o mc , Ed p) d e n ~) >2(d +l1)mnl/d'

The lower bound is now always small and goes to zero, although very slowly, as
n tends to infinity. n1

The essence of Examples 3.2 and 3.3 is that the lower bound on the error
is small if a linear congruential generator is used for each component indepen-
dently. In the next section we derive general upper bounds on the expected
error of the Monte Carlo algorithm with a distribution p. We then apply these
bounds to linear congruential generators as in Examples 3.2 and 3.3.

4. UPPER BOUNDS ON THE ERROR OF THE MONTE CARLO ALGORITHM

WITH PSEUDORANDOM GENERATORS

In this section we analyze the Monte Carlo algorithm with points t, which
are produced by pseudorandom generators such that the t1 are independent
random variables and each ti is chosen with respect to some distribution pi
which is not necessarily a Lebesgue measure.

Let P = [PI, P2, *--, PnI. Then (3.1) takes the form

(4.1) E2(f,~ p) = f 1f (4.1) EnIVn(() n
-

f(ti)) pi (dti)
..

Pn(dtn)-

In order to analyze En (f, p), define the error function

(4.2) e f, pi) = Jf(t) dt - J f(t)pi(dt)

as the difference between the integrals of f with respect to the Lebesgue and
pi measures. Let

n
(4.3) in = nAPi

denote the arithmetic mean of the distributions pi. Note that for pi = A, we
have -in =)A and e(f, pi) = e(f, TO) = 0. We may expect that if pi is "close"
to A, then e(f, pi) and e(f, jT) should be "close" to zero.

Lemma 4.1. If f2 is integrable with respect to the measures A and pi, then

E f p) ((f2) - 12(f)) + -(2I(f)e(f , T) - e(f2, -An)) n n
(4.4) + n 2(f, p1).

e2(f, -n)- 2 Ee2(f Pi)*

334 J. F. TRAUB AND H. WOZNIAKOWSKI

Proof. To show (4.4), observe that (4.1) yields

+
n

__ jI f (ti) f(tj)P1 (d t) Pn(d tn)

- I2(f)-21(f) j f(t)Pn(dt)

+n2 (? jT f2(t)pi(dt) + Z IT f (t)Pi(dt)
J f (t)pi(dt)V

Using the definition of e(f,.) and the identity >ij~ aia1 = (>2 ai)2 - >2 a?2,
we have

E2~(f, p) = I2(f)- 2I(f)(I(f) -e(f, Pn,)) + n J f2(t)Pn(dt)

+ (j f (t)Pn (dt)) - p I (f (t)P.(dt))

=- 2(f) + 2I(f)e(f, Pn) +-I(f2) --e(f2, 7n)

+ I2(f) - 2I(f)e(f , Pn,) + e2(f, Pn~) - 2 Z(I(f) - e(fS Pi))2

- (I(f2) - 2f)+1(2I(f)e(f, Pn~) - e(f, iiPn))
n

+e2(f, P))- ?2Z e2(f, Pi)
i=l

as claimed in (4.4). o

We illustrate Lemma 4.1 by two examples.

Example4e 4 e check (4.4) for the Monte Carlo algorithm. As mentioned
earlier, for Pi = we have e(, Pi) = e(, Pn) = 0 and (4.4) becomes

Ef(f, p)= I(f)-12(f) -!

which is the well-known formula for the expected error of the Monte Carlo
algorithm. 0

Example 4.2. Assume that the arithmetic mean Pn~ is a Lebesgue measure),

but Pi, ... , Pn~ are not necessarily equal to). Then e(., Pn~) = 0, and

E (f,' p) = (f(I(f2) - e(f)) - 2 e (= 1 Pi))1/

Observe that now the expected error En (fS p) is no larger than the expected
error for the uniform distribution.

THE MONTE CARLO ALGORITHM 335

The case 7n = A can be achieved if, for example, the cube T is partitioned
into n disjoint subcubes Ti, each of them of the same Lebesgue measure, and
Pi is defined as a uniform distribution over Ti, as was considered by Haber
[5]. 51

We now discuss (4.4). Since the last term in (4.4) is nonpositive, we have

En2(f , p) < 1
(I(f2) -_ 2(f))

(4.5)
n

+ -(2I(f)e(f, -Pn) - e(f2, 1-An)) + e2(f, in)- n
Note that the first term of (4.5) is the square of the expected error of the Monte
Carlo algorithm, whereas the remaining terms depend on the distribution P,

which is the arithmetic mean of the distributions pi. If e(f2, iin) = 0(1),
then the second term is proportional to n-I, and we may rewrite (4.5) as

En(f,P) = 0 1+ Je(f ~n TJ

Thus, we can preserve the rate of convergence n- 12 if e(f, iPn) = 0(n- 1/2).
We now show that this is the case for the class Ed (see (3.6)) when we use a
linear congruential generator d times as described in Example 3.3.

Example 4.3. As in Example 3.3, let n = pd and h = 1l/p. We partition the
cube T into n subcubes Ti ,.., id . A linear congruential generator of period
m is used d times independently for each component. Assume that initial
seeds are equiprobable. Then the distribution Pi...,1id is a uniform distribution
over the points [ilh, ... , idh]+m-1h[jl, .. , id] from Ti ..., idi, I * * d =

O. l, ... ,M - 1
Then for the arithmetic mean 7in and for any integrable function H we have

JH(t)in(dt) = 1 E IT H(t)pil id(dt) T O~iil, d?P- l ---1.

1 Z Z H([iih,, idh] + m h[ji,, .jd])
nm~~

nm
O<il .id<P-1 0?<l .., ijd<m-1

=Td E HffilT, *** idT]) ,
O<il, id<pm-l

where T = 1/(pm).
We estimate e(f, Tn) and e(f2, Tn) for functions f from Ed . Let

Uil ..id = [i1T, (il + 1)T) X X [dT, (id + 1)T),

where il..., id =O, 1, ...,pm - 1. We have

e(fjn)= J| (f (t) - f ([ilI, ... idT])) dt.
0<il .id<pm- l IU-.d

Since f satisfies a Lipschitz condition,

If(t) - f([il, idT])l < 1t- [iT, . . . idT]oo < T Vt E Uil .id

336 J. F. TRAUB AND H. WOZNIAKOWSKI

Thus,

Ie(f S TJ~ < E ToA(Uil,..., i,)= Tr mI/d l Ie~f,
0-)Il? --d)d =P -Imnl/ O~ii ..id?Pm-l

To estimate e(f2, Tn), note that f E Ed implies that If(t)I < 1 Vt E T. For
x = [ijlT, ... , idT] we thus have

If2(t) -f2(x)I < f(t) + f(x)l If(t) -f(x)I < 2T Vt E Ui 1 id.
This yields

e(f2, n) < 2T= i/d - mnl/
Since II(f)I < 1 for f E Ed, we get from (4.5)

En2 (f, p) !(I (f2)4I2(f)) ?

n - ~~n mnl/d m2n2/d'

IEn(f S P 1 + 4 n -2/d
IE~(f - mn1' +

Hence, as long as n I-2d is at most of order m2, the error of the Monte Carlo
algorithm with distribution p is of order n-1/2, as is the error of the Monte
Carlo algorithm.

We stress that the inequality n1-2/d < m2 is not restrictive in practice. In-
deed, a typical value of m is 230, and for large d, even n < m2 means
n<260. 5

We summarize upper and lower bounds on

eran(, Ed, p) = sup En(f , p),
fEnd

from this example and Example 3.3, in

Theorem 4.1. For the class Ed and n < M2, the Monte Carlo algorithm with
independent points produced by a linear congruential generator ofperiod m with
uniformly distributed initial seeds applied independently to each component with
the shift to the subcubes Ti,.id behaves essentially as the Monte Carlo algo-
rithm,

d 1 14 nl12/d
< eran (~q mc , F 1) 1 + + 2(d + 1) mnl/d - n d, P) < age

mnl/d m2

Finally, we discuss the case for which all the points ti are identically dis-
tributed, pi = p. Then 7n = p, and (4.4) takes the form

En2f ~p) 1 (I(/2 2f)+1 E2(f, p) = -(1(f2) - I(f)) + - (2I(f)e(f , p) - e(f2 , p))
(4.6) n n

+ (1 -i-) e2(f, p).

The last equality can be rewritten as

En{ f no P) = i 1= IDe f n p)

THE MONTE CARLO ALGORITHM 337

Thus, as long as e(f, p) is at most of order n- 12, the expected error behaves
as for the uniform distribution. On the other hand, if n goes to o0, then

limEn(f, p) = le(f, p)I. n

This shows that if p is not the uniform distribution, then the expected error
does not, in general, tend to zero. If, however, p is "close" to the uniform
distribution, then the limit of En(f, p) is small. We illustrate this point by
two examples.

Example 4.4. Assume that p is absolutely continuous with respect to A,

p(A) = h(t) dt for any Borel set A,

with a weight function h: T -- IR+ . Then

e2(f, p) = (ff(t)(1 - h(t)) dt) < ?2(f) (1 -h(t))2 dt.

Thus, if h is a good approximation of the function which is identically equal
to 1, then the limit of En(f , p) is small.

Example 4.5. Assume, as in Example 3.2, that a linear congruential generator
of period m is used d times for each component independently. Assume that
initial seeds are equiprobable. Then the distribution p is a uniform distribution
overthepoints {i1h, i2h, ... , idh} for il. ..., id = 0, .. ., m with h = 1/mr.
(Note that p is not absolutely continuous with respect to A.)

We estimate e(f, p) and e(f2, p) as in Example 4.3 and obtain

Je(f .p)l <
1

le(2', p)l <
2

From these estimates we conclude that

2 (p) _ 1 (I (f2) _ | 4 1
n n ~~mn m2

JEn(f s P)l < +/A1 + 4 +-n

Observe that the bounds above differ from the bounds of Example 4.3 by the
factor n1ld. For large d it is not essential.

Hence, as long as n < m2, the error of the Monte Carlo algorithm with the
distribution p is of order n-'/2, as is the error of the Monte Carlo algorithm.
We summarize upper and lower bounds of this example and Example 3.2 in

Theorem 4.2. For the class Ed and n < m2, the Monte Carlo algorithm with
independent points produced by a linear congruential generator ofperiod m with
uniformly distributed initial seeds applied independently to each component be-
haves essentially as the Monte Carlo algorithm,

d ? <) m eran(4cEdp) 4 n
2(d +1) m - +-- m

338 J. F. TRAUB AND H. WOZNIAKOWSKI

5. OPEN PROBLEMS

1. The emphasis in this paper is on pseudorandom generators which are ca-
pable of producing only finitely many points. In particular, a linear congruential
generator falls in this category. It would be interesting to extend the analysis
of this paper to other generators which, at least theoretically, produce infinitely
many points. An example of such a generator is provided by Z, = o'n mod 1,
where 0 is a transcendental number greater than 1 (see Franklin's theorem in
Knuth [11, p. 152]). Observe that for such generators the lower bound (3.8)
is trivially zero. An open problem is which of these generators preserve the
good properties of the Monte Carlo algorithm for the class of, say, Lipschitz
functions.

2. We have analyzed the class of Lipschitz functions with constant 1. As
mentioned in ?2, there exists a randomized algorithm fo which, for this class,
converges at rate n-1/2-1/d The Monte Carlo algorithm does not have an
optimal rate of convergence, since its error is proportional to n-2 . Of course,
for large d the difference in the exponent is not significant. Nevertheless, it
would be interesting to analyze the algorithm (0 with a pseudorandom generator
and to check under what conditions we can expect an error of order n-/21/d.

3. In this paper we studied integration for the class of Lipschitz functions.
Different classes with more smoothness should also be analyzed. For exam-
ple, classes Cd,' look like natural candidates. What kind of pseudorandom
generators should be used to preserve the error estimates (2.12)?

4. We restrict ourselves in this paper to multivariate integration. It is known
that for some other problems randomization also helps significantly. For ex-
ample, we mention two such problems. The first one is weighted multivariate
integration for which nonuniform distributions should be used. For which pseu-
dorandom generators is it possible to preserve optimal rate of convergence for
weighted multivariate integration?

The second problem is an algebraic eigenvalue problem for which we wish to
approximate the largest eigenvalue of a large n x n symmetric positive definite
matrix A using matrix-vector multiplications. Using a random vector b with
uniform distribution over the unit sphere, one can compute Krylov information
Ab, A2b, ... , Akb and apply the Lanczos algorithm to get an approximation
to the largest eigenvalue with relative error O((ln(n)/k)2) (see Kuczyfiski and
Woiniakowski [12]). For which pseudorandom generators is it possible to pre-
serve this error bound?

BIBLIOGRAPHY

1. E. Bach, Realistic analysis of some randomized algorithms, Proc. 19th ACM Sympos. on
Theory of Computing, 1987, pp. 453-461.

2. N. S. Bakhvalov, On approximate computation of integrals, Vestnik Moskov. Gos. Univ.
Ser. Mat. Mekh. Astronom. Fiz. Khim. 4 (1959), 3-18.

3. M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudo-
random bits, SIAM J. Comput. 13 (1984), 850-863.

4. P. J. Davis and P. Rabinowitz, Methods of numerical integration, 2nd ed., Academic Press,
New York, 1984.

5. S. Haber, A modified Monte Carlo quadrature, Math. Comp. 20 (1966), 361-368.
6. J. H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating

multi-dimensional integrals, Numer. Math. 2 (1960), 84-90.

THE MONTE CARLO ALGORITHM 339

7. J. M. Hammersley and D. C. Handscomb, Monte Carlo methods, Methuen, London, 1964.
8. B. L. Granovskii and S. M. Ermakov, The Monte Carlo method, J. Soviet Math. 7 (1977),

161-192.
9. P. A. Kalos and P. A. Whitlock, Monte Carlo methods, Wiley, New York, 1986.

10. H. J. Karloff and P. Raghavan, Randomized algorithms and pseudorandom numbers, Proc.
20th ACM Sympos. on Theory of Computing, 1988, pp. 310-321.

11. D. E. Knuth, The art of computer programming, 2nd ed., vol. 2, Addison-Wesley, Reading,
MA, 1981.

12. J. Kuczynski and H. Wozniakowski, Estimating the largest eigenvalue by the power and
Lanezos algorithms with a random start, Report, Dept. of Computer Science, Columbia
University, 1989; to appear in SIMAX.

13. D. H. Lehmer, Mathematical models in large-scale computing units, Proc. 2nd Sympos. on
Large-Scale Digital Calculating Machinery (Cambridge, MA, 1949), Harvard Univ. Press,
Cambridge, MA, 1951, pp. 141-146.

14. H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer.
Math. Soc. 84 (1978), 957-1041.

15. , Quasi-Monte Carlo methods for multidimensional numerical integration, Numerical
Integration III (H. BraB and G. Hammerlin, eds.), Internat. Ser. Numer. Math., vol. 85,
Birkhauser Verlag, Basel, 1988, pp. 157-171.

16. , Recent trends in random number and random vector generation, Fifth Internat. Conf.
on Stochastic Programming 1989, Ann. Operations Research (to appear).

17. E. Novak, Deterministic and stochastic error bounds in numerical analysis, Lectures Notes
in Math., vol. 1349, Springer-Verlag, Berlin, 1988.

18. I. M. Sobol, Die Monte Carlo-Methode, Deutsch Verlag, Frankfurt, 1985.
19. A. G. Sukharev, Optimal numerical integration formulas for some classes of functions of

several variables, Soviet Math. Dokl. 20 (1979), 472-475.
20. J. F. Traub, G. W. Wasilkowski, and H. Wozniakowski, Information-based complexity,

Academic Press, New York, 1988.
21. A. Yao, Theory and application of trapdoor functions, Proc. 23rd IEEE Sympos. on Foun-

dation of Computer Science, 1982.

(J. F. Traub and H. Wozniakowski) DEPARTMENT OF COMPUTER SCIENCE, COLUMBIA UNIVER-
SITY, NEW YORK, NEW YORK 10027

E-mail address: traub@cs.columbia.edu

(H. Wozniakowski) INSTITUTE OF INFORMATICS, UNIVERSITY OF WARSAW, WARSAW, POLAND
E-mail address: henryk~cs.columbia.edu

