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THE MONTE CARLO ALGORITHM 
WITH A PSEUDORANDOM GENERATOR 

J. F. TRAUB AND H. WOZNIAKOWSKI 

ABSTRACT. We analyze the Monte Carlo algorithm for the approximation of 
multivariate integrals when a pseudorandom generator is used. We establish 
lower and upper bounds on the error of such algorithms. We prove that as 
long as a pseudorandom generator is capable of producing only finitely many 
points, the Monte Carlo algorithm with such a pseudorandom generator fails for 
L2 or continuous functions. It also fails for Lipschitz functions if the number 
of points does not depend on the number of variables. This is the case if a 
linear congruential generator is used with one initial seed. On the other hand, 
if a linear congruential generator of period m is used for each component, with 
independent uniformly distributed initial seeds, then the Monte Carlo algorithm 
with such a pseudorandom generator using n function values behaves as for 
the uniform distribution and its expected error is roughly n - 1/2 as long as the 
number n of function values is less than m2. 

1. INTRODUCTION 

Randomization is being widely used or proposed to solve both continuous 
and discrete problems. Examples include multivariate integration, algebraic 
eigenvalues, primality testing, byzantine agreement, and verification. When 
randomized algorithms are implemented on a computer, pseudorandom num- 
bers must be used. In this paper we investigate whether the good properties 
of the Monte Carlo algorithm for multivariate integration hold if pseudoran- 
dom numbers are used. We suggest that such an analysis should be performed 
whenever randomization is used. 

One can identify two types of work regarding pseudorandom generators. In 
the first, they are studied in isolation from a particular problem. Excellent sur- 
veys are given in Knuth [1 1, Chapter 3] and Niederreiter [14, 15, 16]. More re- 
cently, polynomial-time unpredictability of pseudorandom generators has been 
studied by Yao [21], Blum and Micali [3], and others. 

In the second, the relation between pseudorandom generators and random- 
ized algorithms is studied for a specific problem. Examples are provided by 
Bach [1], who studied finding square roots modulo a prime number and primal- 
ity testing. Karloff and Raghavan [10] studied sorting, selection, and oblivious 
routing in networks. They showed that certain randomized algorithms work 
well with a linear congruential generator and a random seed. 
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In this paper we discuss approximate integration of functions of d vari- 
ables. It is known that for r times differentiable functions we have to compute 
E(e-d/r) function values at deterministically chosen points to guarantee an e- 
approximation to the integral in the worst case setting (see ?2). If d is large 
relative to r, the problem is intractable, since even the fastest computers cannot 
compute so many function values. 

Many other problems have been proven to be intractable. Sometimes ran- 
domization may be used to break intractability; a general discussion of random- 
ization may be found in Traub, Wasilkowski, and Woiniakowski [20, Chapter 
11]. 

For multivariate integration, randomization is used by computing function 
values at randomized points. In this paper we shall study the Monte Carlo algo- 
rithm with a distribution p. That is, we approximate the integral f[o, ld f (t) dt 
by the arithmetic mean n1 -IEn1 f(ti), where the points ti are random vari- 
ables drawn with respect to p. As is discussed below, we can treat pseudoran- 
dom generators as random number generators with respect to some distribution, 
and alternatively, we will also write the Monte Carlo algorithm with a pseudo- 
random generator. 

When the distribution p is uniform, i.e., the points ti are independent and 
uniformly distributed random variables over the unit cube, we omit mention- 
ing p and refer simply to the Monte Carlo algorithm. Thus when we write 
Monte Carlo algorithm we mean the classical algorithm with independent and 
uniformly distributed points ti. It is known that the Monte Carlo algorithm 
enjoys the following good properties: 

(1) convergence rate n-1/2 independent of dimension d, 
(2) the convergence rate holds even for functions from L2. 

In computational practice, randomized points are obtained by using a pseu- 
dorandom generator, such as a linear congruential generator, from which the 
evaluation points are computed. Obviously, the use of a pseudorandom gen- 
erator can at best approximate independent and uniformly distributed random 
variables. 

The problem addressed in this paper is whether the good properties of the 
Monte Carlo algorithm can be preserved if a pseudorandom generator is used. 
A pseudorandom generator may be understood as a deterministic mechanism 
to generate points. This deterministic mechanism may depend on some param- 
eters. For instance, a linear congruential generator depends on an initial seed. 
If these parameters are randomly selected, the corresponding pseudorandom 
generator can be formally treated as a random generator with respect to some 
distribution. The assumption of random selection of parameters may or may 
not be realistic. Observe that if randomness is not allowed, the worst case re- 
sults imply intractability of multivariate integration. That is why we assume in 
this paper that a pseudorandom generator depends on some randomly selected 
parameters, and we treat pseudorandom generators as random generators with 
respect to some distribution. 

We now informally summarize the conclusions of this paper. We prove that 
the Monte Carlo algorithm with an arbitrary pseudorandom generator which 
is capable of producing only finitely many points fails for some continuous 
functions (see Theorem 3.1). This negative result means that the use of such 
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pseudorandom generators requires more smoothness than the Monte Carlo al- 
gorithm. 

On the other hand, we would like to assume as little extra smoothness as 
possible. We compromise by considering the class of Lipschitz functions with 
uniformly bounded Lipschitz constant. Without loss of generality we take the 
constant as unity. 

For this class we obtain lower and upper bounds on the error of the Monte 
Carlo algorithm with a pseudorandom generator. 

We first discuss lower bounds. In ?3, we show that the error of the Monte 
Carlo algorithm with an arbitrary pseudorandom generator is at least about 
(k*)-l/d (see (3.8)), where k* denotes the total number of points which the 
pseudorandom generator is capable of producing. 

In particular, assume that a linear congruential generator of period m is 
used with one randomly selected initial seed, and that the points at which the 
function is evaluated are defined from d successive pseudorandom numbers. 
Then k* = m, and k* is independent of d (see Example 3.1). Note that even 
for large m and modest d, (k*)-l/d is not small. In this case, the algorithm 
again fails. 

To ensure small error of the Monte Carlo algorithm with a pseudorandom 
generator for the class of Lipschitz functions, we must guarantee that (k*)-lld 
is small even for large d . This can be achieved if a linear congruential generator 
of period m is used d times for each component, with independent initial 
seeds. We then have k* = md and (k*)- ld = m-n (see Example 3.2 and also 
Example 3.3). Usually, m is large, say m = 230, and the lower bound is quite 
acceptable. 

We now turn to upper bounds. In ?4, we establish upper bounds on the 
error of the Monte Carlo algorithm with points which are independent random 
variables produced by arbitrary pseudorandom generators. In particular, the 
upper bound for a linear congruential generator of period m used d times 
for each component independently, and with uniform distribution, is roughly 
n-112 as long as n < M2 (see Theorems 4.1 and 4.2). In this case, the behavior 
is essentially the same as with uniform distribution. 

In ?5 we mention a few open problems. We suggest carrying out similar 
analyses for problems such as weighted multivariate integration and algebraic 
eigenvalues. It would also be of interest to analyze different pseudorandom 
generators, in particular, generators which, at least theoretically, are capable of 
producing infinitely many points. 

2. DETERMINISM AND RANDOMIZATION FOR MULTIVARIATE INTEGRATION 

Let T = [0, 1]d be the d-dimensional unit cube. We wish to approximate 
the multivariate integral 

(2.1) I(f) = f(t) dt 

for any function f: T -D R which belongs to a class F, where F is a subset 
of L2(T). 

We first consider deterministic algorithms (on which use n function values 
at deterministically chosen points to approximate I(f) . More precisely, (On is a 
mapping (not necessarily linear) of the form n (f(tI), f(t2), . . ., f(tn)) , where 
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the deterministic points tl, t2, ... , t, belong to T and may be chosen adap- 
tively, i.e., t4 may depend on the already computed f(t1), f(t2), ..., f(ti- )i 
Let 

edt ((Pn F) = sup II(f) - (D( f(ti), ... , f(tn)) I 
feF 

be the deterministic worst-case error of the algorithm Pn . Let 

(2.2) e det(F) = infedet(,Pn, F) 

be the nth deterministic minimal error which can be achieved by using n 
function values. 

The quantity edet(F) has been extensively studied for many different classes 
F of multivariate functions (see, e.g., Novak [17] for a recent survey). For 
instance, if F = BL2(T) is the unit ball of the space of L2-integrable functions, 
or F = Cd is the unit ball of the class of continuous functions with sup norm, 
then 

(2.3) edet(BL2(T)) = edet(Cd) = 1 Vn. 

This easily follows by noting that if f belongs to Cd and takes on, say, zero 
values at n points then the best bounds on its integral is the interval (-1, + 1) 
and the best approximation is zero, i.e., the midpoint of this interval. This 
implies that the error of any algorithm is at least 1, and since the zero algorithm, 

nO= 0, has error 1, we have 1 = edet(Cd) < edet(BL2(T)) < 1, as claimed. 
Thus, it is impossible to approximate I(f) with error less than one, no matter 
how many function values are used. 

This negative result can be interpreted as stating that continuity of f is not 
enough to compute an approximation in the deterministic worst case setting. 
Therefore, it is natural to study classes of smoother functions. Consider 

(2.4) Cdra= ff T -- R: I DW f(x) - Dj) f(y)I < max I Xi - YiIa VIjI < r d ~~~~~~~~~~~~~ 

as the class of functions all of whose partial derivatives up to order r, where r 
is a nonnegative integer, satisfy a Holder condition with a E (0, 1]. 

Bakhvalov [2] proved that for F = C a we have 

(2.5) edet (Cd a) = Ef(n-(r+a)/d) as n - +oo 

(see also Novak [17, p. 34]). Thus, the nth minimal error goes to zero. How- 
ever, if d is large relative to r + a, then the rate of convergence is very poor. 
To see this more clearly, let n = ndet(e) be the smallest integer for which 
edet (C r a) < e. Then 

(2.6) ndet(g) E-((8-11(r+a))d) 

Thus, ndet(.) is an exponential function of d, and for d large relative to r+ a, 
ndet(e) is huge, even for moderate e. In this case, multivariate integration is 
intractable, since it is impossible to compute so many function values. One may 
say that the "curse of dimensionality" makes the problem intractable. 

To break intractability of multivariate integration, one can evaluate f at 
randomized rather than deterministic points. In this paper we shall study the 
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Monte Carlo algorithm with distribution p. That is, we approximate fT f(t) dt 
by 

(2.7) MC(f; 1t . tn ) = f (ti) 

where the points t1, ..., tn are random variables drawn with respect to p. 
When the distribution p is uniform, i.e., the points t1 are independent and 

uniformly distributed random variables over T, we omit mentioning p and 
refer simply to the Monte Carlo algorithm. There is a huge literature on ran- 
domization with applications to many diverse problems. See books and surveys 
by Hammersley and Handscomb [7], Granovskii and Ermakov [8], Davis and 
Rabinowitz [4], Sobol [18], Kalos and Whitlock [9], Niederreiter [14, 15, 16], 
and Novak [17]. 

The quality of the Monte Carlo algorithm is defined by the expected error 
with respect to the points t1 for a worst-case function f from the class F. 
That is, 

(f( 1 ~~~~21/2 
(2.8) eran(t4 c, F, A) = sup i I(f)- dt, ..dtn n 

~~feE \Jn nZ-vfkti~) .d) 

where A stands for the Lebesgue measure. 
The basic property of the Monte Carlo algorithm is that the expected error 

En (f, A) for a function f is 

(2.9) En(f,~ ) = 
(J 

Y 
(If! f(ti)) dt... dtfln (2.9) (Jn ( n l )) 

= >1 V (t) - I(f))2 dt) 

Remark 2.1. The expected error of the Monte Carlo algorithm for the function 
f depends on its variance fT(f(t) - I(f))2 dt. There are many techniques 
on how to decrease the variance by performing certain transformations on the 
function f (see, e.g., Davis and Rabinowitz [4] for a survey). These tech- 
niques require some additional information about the function f such as extra 
smoothness, a particular form, or location of singularities. In our case, we as- 
sume that the only information about f is given by its function values and by 
the fact that f belongs to F. Therefore, in general, techniques for decreasing 
the variance are not applicable under our assumptions. 01 

Take now the supremum in (2.9) with respect to functions f from F = 
BL2(T) or F= Cd. Then 

(2.10) eran( MC, F, A) = fan-1/2), 

where the constants in the 0 notation do not depend on d. 
Thus, the Monte Carlo algorithm converges even for nonsmooth functions. 

Moreover, the rate of convergence does not depend on the dimension d. 
It is natural to ask if the error of the Monte Carlo algorithm can be im- 

proved by the use of different distributions of sample points or by differently 
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combining the computed function values. That is, let On denote the class of all 
(possibly randomized) algorithms that use function values at randomized points 
f(tP), f(t2), . . . , f(tn~j)) with respect to some distribution p. Here, n(f) is 
also a random variable with expected value at most n . Let 

(2.11) e'an(F) = inf eran((o, F) 
neVON 

denote the nth minimal error of such algorithms. 
Bakhvalov [2] for n (f) =_ n, and Novak [17] for randomized n (f), proved 

that 

(2.12) e'an(Cd) = E(n -1/2) eran(Cr 'a) = E(n -((r+a)1d+112)) 
This means that the Monte Carlo algorithm is optimal (to within a multiplicative 
constant) for the class Cd and BL2 (T), and is close to optimal for the class 
Cd a whenever d is large relative to r + a. 

The exponents in the nth minimal errors for the deterministic and random- 
ized cases differ by 2. This is essential. To see this, compare the smallest 
numbers of function evaluations necessary to guarantee that the nth minimal 
errors to not exceed e . For the randomized case and the class Cd' a we have 

(2.13) nran(,) = E9(, -2/(1+2(r+a)/d)) = 0(6-2) 

Thus, nran(.) is at most a quadratic function in e-1 for all d, as opposed to 
an exponential function ndet(.) of d in the deterministic case (see (2.6)). 

3. LOWER BOUNDS ON THE ERROR OF THE MONTE CARLO ALGORITHM 
WITH PSEUDORANDOM NUMBER GENERATORS 

The good properties of the Monte Carlo algorithm are based on two assump- 
tions: 

(1) the points t1, t2, ..., tn are independent and uniformly distributed 
random variables over T = [0, 1id, 

(2) the effect of randomness is measured by the expected distance between 
I(f) and i 

EZnI f(ti) with respect to the points ti. 
In computational practice, the points t1 are selected by using a pseudoran- 
dom generator. This generator produces a sequence of numbers from which 
the points t1 are calculated. Clearly, any pseudorandom generator can at best 
approximate independent and uniformly distributed random variables. It is 
natural to ask whether the good error properties of the Monte Carlo algorithm 
can be preserved when a pseudorandom generator is used. 

Technically, this corresponds to the problem of analyzing the Monte Carlo 
algorithm if assumption (1) is only approximately satisfied whereas assumption 
(2) is left unchanged. Assume thus that the points *= [tl, t2, ..., tn] E Tn are 
drawn with respect to some distribution p. The expected error of the Monte 
Carlo algorithm for a function f is now defined as 

(3.1) (fT P) i (f fti) p(dt) 

By the maximal expected error in the class F we mean (compare with (2.8)) 

(3.2) eran((mc, FF p) = supEn(f, p). 
feF 
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Assume that a pseudorandom generator can produce only finitely many dif- 
ferent numbers from which the points ti are calculated. Then the distribution 
p is an atomic measure supported on the points, say, I, x2, . .., X% for some 
k, usually very large, where xi = [xi1, xIi2, ...2, Xin] with xi,j E T. The 
number k may or may not depend on the dimension d. This depends on how 
pseudorandom numbers are used to compute the points xi. We then have for 
any function H: Tn -R 

k 

(3.3) I H(x )p(d x) = EpiH(x, ) 

for some nonnegative Pi and EkZ- pi = 1. 
Let k* denote the total number of different components of the points xl, x2, 

..., X . That is, k* is the cardinality of the set 

IXi,j E T: i = 1, 2, ..., k, j 1, 2, E n} = It*, t2,* , t**} 

Clearly, k* < kn. As we shall see later, depending on how the points t* are 
computed from pseudorandom numbers, k* may depend on d and n, or k* 
may be independent of d and n . 

The form (3.3) of p enables us to find a lower bound on the expected error 
En (f, p) for some functions f from the class F. To accomplish this, take 
a function f from F which vanishes at all the points t'*, t*, ..., tk* . Then 

En(f, p) = II(f)I. If F is convex and balanced, i.e., f E F implies that 
-f E F, then it is known that 

sup{|I(f)|: f E F, f(t7) = 0, i = 1,2, ... , k*} = eket(F) 

where, as in (2.2), edet(F) denotes the k*th deterministic minimal error which 
can be achieved by using k* function values. Thus, 

(3.4) eran((pmc, F p) ? ek.t(F) 

For some convex and balanced classes F, the k* deterministic minimal error 
is constant. For example, if F = BL2(T) or F = Cd, then eket(F) = 1 Vk* 
(see (2.3)). Therefore, we have 

Theorem 3.1. The Monte Carlo algorithm with an arbitrary pseudorandom gen- 
erator which is capable of producing only finitely many points does not converge 
for the class F = BL2(T) or F = Cd, 

(3.5) eran(pmc, F, p) > 1 for F = BL2(T) or F = Cd. 

Theorem 3.1 should be contrasted with (2.10), which states that for p = A 
(the Lebesgue measure) we obtain the Monte Carlo algorithm whose convergence 
iS eran(l4McC, F, A) = E(n- 1/2) 

Remark 3.1. The estimate (3.5) remains true for an arbitrary algorithm 
(o(f(tl), f(t2), ..., f(tn)). That is, for F = BL2(T) or F = Cd, we still 
have 

f 1/2 
inf sup g(I (f ) - Pf ff(tl ), f (t2), . , tn )))2 p(t)) >1 

V fEF Tn 
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This negative result can be interpreted as stating that the use of a pseudorandom 
generator resulting in finitely many points t7 requires more smoothness of f 
than the Monte Carlo algorithm. 

On the other hand, if we assume sufficient smoothness of functions, then even 
the deterministic estimates become quite acceptable. For example, consider the 
class F = Cd a with r +a comparable to d . Then the estimate (2.5) indicates 
that multivariate integration is a tractable problem. 

Recall that the Monte Carlo algorithm works well even for nonsmooth func- 
tions. That is why, using a pseudorandom generator, we would like to preserve 
this good property with as little extra smoothness of the functions f as possible. 

Clearly, continuity of f is not enough. We compromise by assuming that f 
satisfies a Lipschitz condition with constant, say, 1. Without loss of generality, 
we also assume that f(O) = 0 . That is, let f belong to Ed, where 

Fd= {f: T - R: f(0) = 0 and If(x) -f(y)l < llx-YIK 
(3.6) 

- max Ixi - Y2 }I 
1<i<d J 

This class has been analyzed in the deterministic worst-case setting by Sukharev 
[19], who proved that 

(3.7) e*t(Fd) > 1 L(k*)l/dJ-l 

and we have equality in (3.7) if (k*)l/d is an integer. Using (3.7) and (3.4), we 
conclude that 

(3.8) eran(ipmjc, 
Ed p) d d1j1 (n d P) > 2(d + 1) L(k*) J 

As mentioned before, k* may or may not depend on d and n. If k* does 
not depend on d and n, then for large d, the right-hand side of (3.8) is close 
to 2. Furthermore, since L(k*) ld1-1 goes to 1 very quickly as d increases, 
even for very large k* and modest d, the right-hand side of (3.8) is not small. 
For example, take k* = 230 and d = 10. Then 

d L(k*)Ildj-1 = 5- 
2(d + 1) [(8)/"' 

In this case, we again lose the convergence rate enjoyed by the Monte Carlo 
algorithm. We now present an example where this happens. 

Example 3.1. One of the most widely used pseudorandom generators is a linear 
congruential generator proposed by Lehmer [13] and extensively studied in the 
literature (see, e.g., Niederreiter [14] and Knuth [1 1]). The linear congruential 
generator produces a sequence of integers 

ao = an initial seed, which is an integer from [0, m), 
ai+l = (Aai + r) mod m, i = 0, 1, .... 

Here, the modulus m is taken as a large prime or a large power of 2, the 
multiplier A is a positive integer relatively prime to m, and r is called the 
increment. The parameters m, A, and r have to be chosen such that the 
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sequence {ai} passes appropriate statistical tests. In particular, the period of 
this sequence should be about m. 

From the integers ai one can compute the points xi as follows. Let zi = 

ai/m and 
Xi = [Zi, Z *** Zi+d-1l. 

The properties and shortcomings of the points xi have been extensively studied, 
and surveys may be found in the works mentioned above. Note that all the 
points xi are fully determined by the initial seed ao . To stress this dependence, 
we write xi = xi(ao) . The points x = x(ao) are then given by 

X(ao) = [xi(ao), X2(ao), ..., xn(ao)] E Tnd. 

By changing the initial seed ao we obtain different points x(ao) . Since ao can 
take at most m different values, we have k < m different points x(ao) . The 
distribution p now takes the form (see (3.3)) 

J/ H(x) p(dx) = E PaoH(x(ao)) 
O<ao<m-1 

for some weights Pao . (If ao takes m different values with equal probability, 
then Pao = 1/rm.) 

Now, the number of different components of x(ao) 's is equal to the number 
of different points x1 (ao), x2(ao), ... , xn (ao). Clearly, there are at most as 
many such points as there are different values of ao. Thus, there are at most 
m of them. Hence, k* < m. In this case, k* does not depend on d and n, 
and we may apply the estimate (3.8). This proves that this use of the linear 
congruential generator leads to poor results for the class Fd with large d. 01 

Remark 3.2. It should be noted that the negative result of Example 3.1 does not 
hold if one assumes extra smoothness of functions f. More precisely, if we 
assume that f has a finite variation V(f) in the sense of Hardy and Krause, 
then the Koksma-Hlawka inequality states that 

(3.9) I(f )-n f (xi) < V(f)Dn, 

where Dn is the discrepancy of the points xI, x2, ..., xn (see Niederreiter 
[14, 15, 16] for excellent surveys on this subject). 

The total variation V(f) is finite if f is once differentiable in each direction 
ti, and aif/& til . ati, for j < d belongs to L1 (T). (Therefore, not all 
functions in Fd have finite variation!) 

For the points xi given by a linear congruential generator, the discrepancy 
Dn was studied by Niederreiter, who proved, in particular, that for a good 
choice of the parameters we have 

D= (h(lom)d+l) for n < m 
n 

(see Niederreiter [14, p. 1018]). 
The estimate (3.9) suggests that as long as we consider functions of finite 

variation, we should choose points which minimize the discrepancy Dn. This 
problem has also been extensively studied, and Halton [6] proved that there exist 
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points for which the discrepancy D, is of order n -I (log n)d-l (see Niederreiter 
[14, 15, 16] for a survey of what is known about the discrepancy). 

In summary, the extra smoothness introduced by the existence of finite varia- 
tion makes multivariate integration a tractable problem, since with a good choice 
of n deterministic points the error goes to zero as n1 -(log n)dl- . Hence, the 
rate of convergence depends very mildly on the dimension d. For such a class 
of functions, we obviously should not use randomization. 01 

The discussion above indicates that for the class Ed we should use a pseudo- 
random generator and calculate the points t7 in such a way that k* depends on 
d and/or n and is as large as possible. In view of the right-hand side of (3.8), 
we would ideally like to have L(k*)l/dJ-l be independent of d and hopefully 
small. We now indicate how this can be achieved for two examples still using a 
linear congruential generator. 

Example 3.2. As in Example 3.1, consider a linear congruential generator pro- 
ducing the integer sequence {ai} of period m. Suppose we use this generator 
d times for each component of x = [xl(al), x2(a2), ..., xd(ad)] with inde- 
pendent initial seeds a1, a2, ..., a~d. Since each xi(ai) can take m different 
values, and because they are independent, we could generate md different points 
of T. Thus, k* = md, and (3.8) now becomes 

(3.10) eran(qpc, Fdp) > d 1 

Since m is usually huge, the right-hand side of (3.10) is quite satisfactory. 01 

Example 3.3. For simplicity assume that n = pd, and let h = i/p. Partition 
the cube T into n subcubes 

Til.i2 id = [iih, (i1 + 1)h) x [i2h, (i2+ 1)h) X *.. X [idh, (id + 1)h) 

for il , i2 ... , id = 0 1 ,... , p-1 . 
Using a linear congruential generator of period m, select only one vector 

x = [xi(ao), X2(ao), ... , xn(ao)]. 

Then define the points Zi..d by shifting hx to each subcube Til ..d i.e., 

Xil .id =[iih, ... , idh] + hx. 

Then we will have k* = mn different points jl,. d, and (3.8) becomes 

eran(ql, Ed, p) d_ 1dj1 

dpdn o d .d 
P) > 

2(d+ 1)L(mn) 
J. 

Although the lower bound goes now to zero as n goes to oc, we still have a bad 
dependence on d. This can be improved by running the linear congruential 
generator d times for each component of x independently, as in Example 3.2. 
That is, we now have 

x = [xi(al), x2(a 2), x. , xd(aod)], 

Xil.id = [iih, ..., idhl+hx. 
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In this case, we have k* = mdn different points xi., and (3.8) becomes 

eran(,o mc , Ed p) d e n ~ ) >2(d +l1)mnl/d' 

The lower bound is now always small and goes to zero, although very slowly, as 
n tends to infinity. n1 

The essence of Examples 3.2 and 3.3 is that the lower bound on the error 
is small if a linear congruential generator is used for each component indepen- 
dently. In the next section we derive general upper bounds on the expected 
error of the Monte Carlo algorithm with a distribution p. We then apply these 
bounds to linear congruential generators as in Examples 3.2 and 3.3. 

4. UPPER BOUNDS ON THE ERROR OF THE MONTE CARLO ALGORITHM 

WITH PSEUDORANDOM GENERATORS 

In this section we analyze the Monte Carlo algorithm with points t, which 
are produced by pseudorandom generators such that the t1 are independent 
random variables and each ti is chosen with respect to some distribution pi 
which is not necessarily a Lebesgue measure. 

Let P = [PI, P2, *--, PnI. Then (3.1) takes the form 

(4.1) E2(f,~ p) = f 1f (4.1) EnIVn(() n 
- 

f(ti)) pi (dti) 
.. 

Pn(dtn)- 

In order to analyze En (f, p), define the error function 

(4.2) e f, pi) = Jf(t) dt - J f(t)pi(dt) 

as the difference between the integrals of f with respect to the Lebesgue and 
pi measures. Let 

n 
(4.3) in = nAPi 

denote the arithmetic mean of the distributions pi. Note that for pi = A, we 
have -in = )A and e(f, pi) = e(f, TO) = 0. We may expect that if pi is "close" 
to A, then e(f, pi) and e(f, jT) should be "close" to zero. 

Lemma 4.1. If f2 is integrable with respect to the measures A and pi, then 

E f p) ((f2) - 12(f)) + -(2I(f)e(f , T) - e(f2, -An)) n n 
(4.4) + n 2(f, p1). 

e2(f, -n)- 2 Ee2(f Pi)* 
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Proof. To show (4.4), observe that (4.1) yields 

+ 
n 

__ jI f (ti) f(tj)P1 (d t) Pn(d tn) 

- I2(f)-21(f) j f(t)Pn(dt) 

+n2 (? jT f2(t)pi(dt) + Z IT f (t)Pi(dt) 
J f (t)pi(dt)V 

Using the definition of e(f,.) and the identity >ij~ aia1 = (>2 ai)2 - >2 a?2, 
we have 

E2~(f, p) = I2(f)- 2I(f)(I(f) -e(f, Pn,)) + n J f2(t)Pn(dt) 

+ (j f (t)Pn (dt)) - p I (f (t)P.(dt)) 

=- 2(f) + 2I(f)e(f, Pn) +-I(f2) --e(f2, 7n) 

+ I2(f) - 2I(f)e(f , Pn,) + e2(f, Pn~) - 2 Z(I(f) - e(fS Pi))2 

- (I(f2) - 2f)+1(2I(f)e(f, Pn~) - e(f, iiPn)) 
n 

+e2(f, P) )- ?2Z e2(f, Pi) 
i=l 

as claimed in (4.4). o 

We illustrate Lemma 4.1 by two examples. 

Example4e 4 e check (4.4) for the Monte Carlo algorithm. As mentioned 
earlier, for Pi = we have e(, Pi) = e(, Pn) = 0 and (4.4) becomes 

Ef(f, p)= I(f)-12(f) -! 

which is the well-known formula for the expected error of the Monte Carlo 
algorithm. 0 

Example 4.2. Assume that the arithmetic mean Pn~ is a Lebesgue measure ), 

but Pi, ... , Pn~ are not necessarily equal to ). Then e(., Pn~) = 0, and 

E ( f,' p) = (f(I(f2) - e(f )) - 2 e (= 1 Pi))1/ 

Observe that now the expected error En (fS p) is no larger than the expected 
error for the uniform distribution. 
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The case 7n = A can be achieved if, for example, the cube T is partitioned 
into n disjoint subcubes Ti, each of them of the same Lebesgue measure, and 
Pi is defined as a uniform distribution over Ti, as was considered by Haber 
[5]. 51 

We now discuss (4.4). Since the last term in (4.4) is nonpositive, we have 

En2(f , p) < 1 
(I(f2) -_ 2(f)) 

(4.5) 
n 

+ -(2I(f)e(f, -Pn) - e(f2, 1-An)) + e2(f, in)- n 
Note that the first term of (4.5) is the square of the expected error of the Monte 
Carlo algorithm, whereas the remaining terms depend on the distribution P, 

which is the arithmetic mean of the distributions pi. If e(f2, iin) = 0(1), 
then the second term is proportional to n-I, and we may rewrite (4.5) as 

En(f,P) = 0 1+ Je(f ~n TJ 

Thus, we can preserve the rate of convergence n- 12 if e(f, iPn) = 0(n- 1/2). 
We now show that this is the case for the class Ed (see (3.6)) when we use a 
linear congruential generator d times as described in Example 3.3. 

Example 4.3. As in Example 3.3, let n = pd and h = 1l/p. We partition the 
cube T into n subcubes Ti ,.., id . A linear congruential generator of period 
m is used d times independently for each component. Assume that initial 
seeds are equiprobable. Then the distribution Pi...,1id is a uniform distribution 
over the points [ilh, ... , idh]+m-1h[jl, .. , id] from Ti ..., idi, I * * d = 

O. l, ... ,M - 1 
Then for the arithmetic mean 7in and for any integrable function H we have 

JH(t)in(dt) = 1 E IT H(t)pil id(dt) T O~iil, d?P- l ---1. 

1 Z Z H([iih, ... ., idh] + m h[ji, ... ., .jd]) 
nm~~ 

nm 
O<il .id<P-1 0?<l .., ijd<m-1 

=Td E HffilT, *** idT]) , 
O<il, id<pm-l 

where T = 1/(pm). 
We estimate e(f, Tn) and e(f2, Tn) for functions f from Ed . Let 

Uil ..id = [i1T, (il + 1)T) X X [dT, (id + 1)T), 

where il..., id =O, 1, ...,pm - 1. We have 

e(fjn)= J| (f (t) - f ([ilI, ... idT])) dt. 
0<il .id<pm- l IU-.d 

Since f satisfies a Lipschitz condition, 

If(t) - f([il, ... . idT])l < 1t- [iT, . . . idT]oo < T Vt E Uil .id 
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Thus, 

Ie(f S TJ~ < E ToA(Uil,..., i,)= Tr mI/d l Ie~f, 
0-)Il? --d)d =P -Imnl/ O~ii ..id?Pm-l 

To estimate e(f2, Tn), note that f E Ed implies that If(t)I < 1 Vt E T. For 
x = [ijlT, ... , idT] we thus have 

If2(t) -f2(x)I < f(t) + f(x)l If(t) -f(x)I < 2T Vt E Ui 1 id. 
This yields 

e(f2, n) < 2T= i/d - mnl/ 
Since II(f)I < 1 for f E Ed, we get from (4.5) 

En2 (f, p) !(I (f2)4I2( f)) ? 

n - ~~n mnl/d m2n2/d' 

IEn(f S P 1 + 4 n -2/d 
IE~(f - mn1' + 

Hence, as long as n I-2d is at most of order m2, the error of the Monte Carlo 
algorithm with distribution p is of order n-1/2, as is the error of the Monte 
Carlo algorithm. 

We stress that the inequality n1-2/d < m2 is not restrictive in practice. In- 
deed, a typical value of m is 230, and for large d, even n < m2 means 
n<260. 5 

We summarize upper and lower bounds on 

eran( , Ed, p) = sup En(f , p), 
fEnd 

from this example and Example 3.3, in 

Theorem 4.1. For the class Ed and n < M2, the Monte Carlo algorithm with 
independent points produced by a linear congruential generator ofperiod m with 
uniformly distributed initial seeds applied independently to each component with 
the shift to the subcubes Ti,.id behaves essentially as the Monte Carlo algo- 
rithm, 

d 1 14 nl12/d 
< eran (~q mc , F 1) 1 + + 2(d + 1) mnl/d - n d, P) < age 

mnl/d m2 

Finally, we discuss the case for which all the points ti are identically dis- 
tributed, pi = p. Then 7n = p, and (4.4) takes the form 

En2f ~p) 1 (I(/2 2f)+1 E2( f, p) = -(1(f2) - I(f)) + - (2I(f)e(f , p) - e(f2 , p)) 
(4.6) n n 

+ (1 -i-) e2(f, p). 

The last equality can be rewritten as 

En{ f no P ) = i 1= IDe f n p) 
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Thus, as long as e(f, p) is at most of order n- 12, the expected error behaves 
as for the uniform distribution. On the other hand, if n goes to o0, then 

limEn(f, p) = le(f, p)I. n 

This shows that if p is not the uniform distribution, then the expected error 
does not, in general, tend to zero. If, however, p is "close" to the uniform 
distribution, then the limit of En(f, p) is small. We illustrate this point by 
two examples. 

Example 4.4. Assume that p is absolutely continuous with respect to A, 

p(A) = h(t) dt for any Borel set A, 

with a weight function h: T -- IR+ . Then 

e2(f, p) = (ff(t)(1 - h(t)) dt) < ?2(f) (1 -h(t))2 dt. 

Thus, if h is a good approximation of the function which is identically equal 
to 1, then the limit of En(f , p) is small. 

Example 4.5. Assume, as in Example 3.2, that a linear congruential generator 
of period m is used d times for each component independently. Assume that 
initial seeds are equiprobable. Then the distribution p is a uniform distribution 
overthepoints {i1h, i2h, ... , idh} for il. ..., id = 0, .. ., m with h = 1/mr. 
(Note that p is not absolutely continuous with respect to A.) 

We estimate e(f, p) and e(f2, p) as in Example 4.3 and obtain 

Je(f .p)l < 
1 

le(2', p)l < 
2 

From these estimates we conclude that 

2 ( p) _ 1 (I (f2) _ | 4 1 
n n ~~mn m2 

JEn(f s P)l < +/A1 + 4 +-n 

Observe that the bounds above differ from the bounds of Example 4.3 by the 
factor n1ld. For large d it is not essential. 

Hence, as long as n < m2, the error of the Monte Carlo algorithm with the 
distribution p is of order n-'/2, as is the error of the Monte Carlo algorithm. 
We summarize upper and lower bounds of this example and Example 3.2 in 

Theorem 4.2. For the class Ed and n < m2, the Monte Carlo algorithm with 
independent points produced by a linear congruential generator ofperiod m with 
uniformly distributed initial seeds applied independently to each component be- 
haves essentially as the Monte Carlo algorithm, 

d ? <) m eran(4cEdp) 4 n 
2(d +1) m - +-- m 
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5. OPEN PROBLEMS 

1. The emphasis in this paper is on pseudorandom generators which are ca- 
pable of producing only finitely many points. In particular, a linear congruential 
generator falls in this category. It would be interesting to extend the analysis 
of this paper to other generators which, at least theoretically, produce infinitely 
many points. An example of such a generator is provided by Z, = o'n mod 1, 
where 0 is a transcendental number greater than 1 (see Franklin's theorem in 
Knuth [11, p. 152]). Observe that for such generators the lower bound (3.8) 
is trivially zero. An open problem is which of these generators preserve the 
good properties of the Monte Carlo algorithm for the class of, say, Lipschitz 
functions. 

2. We have analyzed the class of Lipschitz functions with constant 1. As 
mentioned in ?2, there exists a randomized algorithm fo which, for this class, 
converges at rate n-1/2-1/d The Monte Carlo algorithm does not have an 
optimal rate of convergence, since its error is proportional to n-2 . Of course, 
for large d the difference in the exponent is not significant. Nevertheless, it 
would be interesting to analyze the algorithm (0 with a pseudorandom generator 
and to check under what conditions we can expect an error of order n-/21/d. 

3. In this paper we studied integration for the class of Lipschitz functions. 
Different classes with more smoothness should also be analyzed. For exam- 
ple, classes Cd,' look like natural candidates. What kind of pseudorandom 
generators should be used to preserve the error estimates (2.12)? 

4. We restrict ourselves in this paper to multivariate integration. It is known 
that for some other problems randomization also helps significantly. For ex- 
ample, we mention two such problems. The first one is weighted multivariate 
integration for which nonuniform distributions should be used. For which pseu- 
dorandom generators is it possible to preserve optimal rate of convergence for 
weighted multivariate integration? 

The second problem is an algebraic eigenvalue problem for which we wish to 
approximate the largest eigenvalue of a large n x n symmetric positive definite 
matrix A using matrix-vector multiplications. Using a random vector b with 
uniform distribution over the unit sphere, one can compute Krylov information 
Ab, A2b, ... , Akb and apply the Lanczos algorithm to get an approximation 
to the largest eigenvalue with relative error O((ln(n)/k)2) (see Kuczyfiski and 
Woiniakowski [12]). For which pseudorandom generators is it possible to pre- 
serve this error bound? 
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